Description
- Measures frequency and resistance
- Analog output for potentiostats
- Reads highly loaded crystals (up to 5 kW)
- Transformer-isolated crystal
- Simple shunt-capacitance cancellation
- External 10 MHz input
- Windows/Mac software
The QCM200 Quartz Crystal Microbalance measures mass and viscosity in processes occurring at or near surfaces, or within thin films. This system includes a controller, crystal oscillator electronics, crystal holder, three quartz crystals, and Windows / Mac software.
The instrument reads the resonant frequency and resistance of a 5 MHz, AT-cut quartz crystal. The resonant frequency changes as a linear function of the mass of material deposited on the crystal surface. The resistance at resonance changes with the viscosity / elasticity of the material (film or liquid) in contact with the crystal surface.
As a gravimetric instrument, the QCM200 can measure mass ranging from micrograms to fractions of a nanogram. Detection limits correspond to submonolayers of atoms. Observations of conformational changes, such as phase transitions, swelling, and cross-linking, can easily be made.
Specifically designed to handle heavy loads (up to 5 kW), the instruments will maintain oscillation in aqueous solutions contai ning over 88 % glycerol (w/w %). It isideal for studies involving lossy films and highly viscous liquids.
The QCM200 is a stand-alone instrument with a built-in frequency counter and resistance meter. Series resonance frequency and resistance are measured and displayed, and there is an analog output proportional to frequency which can be used to interface with a potentiostat. The QCM200 can be operated from the front panel or a PC using the RS-232 interface. Windows and MacIntosh software is provided for real-time data acquisition, display, analysis and storage. Both frequency and resistance trends can be viewed. User-tags are provided to time-stamp important events.
The stability and accuracy of the QCM200 are ideal for most experiments. For special applications requiring optimum long-term frequency stability, a precision timebase, such as the FS725 Rubidium Frequency Standard, can be connected to the external 10 MHz input.
Datasheet (PDF file)